Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 144
1.
J Neuroinflammation ; 21(1): 94, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622640

BACKGROUND: Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS: We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS: We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS: These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.


Brain Injuries, Traumatic , Fibrin , Humans , Mice , Animals , Fibrin/genetics , Fibrin/metabolism , Brain Injuries, Traumatic/pathology , Fibrinogen/metabolism , Immunity, Innate , Oxidative Stress , Mice, Inbred C57BL
2.
Anticancer Res ; 44(2): 665-672, 2024 Feb.
Article En | MEDLINE | ID: mdl-38307569

BACKGROUND/AIM: Fibrin-associated large B-cell lymphoma (FA-LBCL) is a newly identified subtype of Epstein-Barr virus (EBV)-associated lymphoma. Arising within fibrinous material in confined spaces, FA-LBCL is associated with chronic inflammation. We herein report histopathologic features and molecular alterations of three cases of FA-LBCL to refine this new disease entity. MATERIALS AND METHODS: We performed immunohistochemical staining for CD3, CD20, CD10, Bcl-2, Bcl-6, MUM-1, CD10, and c-Myc and in situ hybridization for EBV-encoded RNA. Additionally, targeted DNA sequencing was conducted using commercially available gene panels. RESULTS: Three cases of FA-LBCL developed underlying lesions of retroperitoneal cyst, cardiac myxoma, and pancreatic cyst. Histopathologic features of these lesions were characterized by aggregates of atypical large cells in a background of fibrinous cellular debris. Atypical lymphoid cells were positive for CD20, Bcl-2, MUM-1, and EBV-in situ hybridization, negative for CD10, and variably positive for Bcl-6 and c-Myc. NGS analysis revealed the presence of pathogenic mutations in BRIP1, SOCS1, and KRAS. CONCLUSION: This is the first report of NGS analysis in FA-LBCL cases. It provides precise clinicopathological and molecular traits and allows its recognition as a new entity.


Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Humans , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/genetics , High-Throughput Nucleotide Sequencing , Fibrin/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Nucleotides
4.
Zhonghua Bing Li Xue Za Zhi ; 52(6): 592-598, 2023 Jun 08.
Article Zh | MEDLINE | ID: mdl-37263924

Objective: To investigate the clinical, pathological and immunophenotypic features, molecular biology and prognosis of fibrin-associated large B-cell lymphoma (LBCL-FA) in various sites. Methods: Six cases of LBCL-FA diagnosed from April 2016 to November 2021 at the Beijing Friendship Hospital, Capital Medical University, Beijing, China and the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China were collected. The cases were divided into atrial myxoma and cyst-related groups. Clinical characteristics, pathological morphology, immunophenotype, Epstein Barr virus infection status, B-cell gene rearrangement and fluorescence in situ hybridization of MYC, bcl-2, bcl-6 were summarized. Results: The patients' mean age was 60 years. All of them were male. Three cases occurred in atrial myxoma background, while the others were in cyst-related background, including adrenal gland, abdominal cavity and subdura. All cases showed tumor cells located in pink fibrin clot. However, three cyst-related cases showed the cyst wall with obviously fibrosis and inflammatory cells. All cases tested were non germinal center B cell origin, positive for PD-L1, EBER and EBNA2, and were negative for MYC, bcl-2 and bcl-6 rearrangements, except one case with MYC, bcl-2 and bcl-6 amplification. All of the 5 cases showed monoclonal rearrangement of the Ig gene using PCR based analysis. The patients had detailed follow-ups of 9-120 months, were treated surgically without radiotherapy or chemotherapy, and had long-term disease-free survivals. Conclusions: LBCL-FA is a group of rare diseases occurring in various sites, with predilection in the context of atrial myxoma and cyst-related lesions. Cyst-related lesions with obvious chronic inflammatory background show more scarcity of lymphoid cells and obvious degeneration, which are easy to be missed or misdiagnosed. LBCL-FA overall has a good prognosis with the potential for cure by surgery alone and postoperative chemotherapy may not be necessary.


Atrial Fibrillation , Epstein-Barr Virus Infections , Lymphoma, Large B-Cell, Diffuse , Myxoma , Humans , Male , Middle Aged , Fibrin/genetics , Herpesvirus 4, Human/genetics , In Situ Hybridization, Fluorescence , Lymphoma, Large B-Cell, Diffuse/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics
5.
Mol Genet Metab ; 139(3): 107623, 2023 07.
Article En | MEDLINE | ID: mdl-37302269

BACKGROUND AND AIMS: Aminothiols, including cysteine (Cys) and glutathione (GSH) in relation to fibrin clot phenotype were not investigated in patients with venous thromboembolism (VTE) and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene variants. We aimed to explore the associations between MTHFR variants and plasma oxidative stress indicators including aminothiols as well as fibrin clot properties with plasma oxidative status and fibrin clot properties in this group of patients. METHODS: In 387 VTE patients the MTHFR c.665C > T and c.1286A > C variants were genotyped, together with chromatographic separation of plasma thiols. We also determined nitrotyrosine levels and fibrin clot properties, including clot permeability (Ks), lysis time (CLT), and fibrin fibers thickness. RESULTS: There were 193 patients with MTHFR c.665C > T (49.9%) and 214 (55.3%) with c.1286A > C variants. Both allele carriers with total homocysteine (tHcy) levels >15 µM (n = 71, 18.3%), compared to patients with tHcy ≤15 µM had 11.5% and 12.5% higher Cys levels, 20.6% and 34.3% higher GSH levels as well as 28.1% and 57.4% increased nitrotyrosine levels, respectively (all P < 0.05). The MTHFR c.665C > T carriers with tHcy levels >15 µM compared to tHcy ≤15 µM had 39.4% reduced Ks and 9% reduced fibrin fibers thickness (both P < 0.05) with no differences in CLT. In the MTHFR c.1286A > C carriers with tHcy levels >15 µM, Ks was decreased by 44.5%, CLT prolonged by 46.1%, and fibrin fibers thickness was reduced by 14.5% compared to patients with tHcy ≤15 µM (all P < 0.05). Nitrotyrosine levels in MTHFR variants carriers correlated with Ks (r = -0.38, P < 0.05) and fibrin fibers diameter (r = -0.50, P < 0.05). CONCLUSIONS: Our study indicates that patients with MTHFR variants and tHcy >15 µM are characterized by elevated Cys and nitrotyrosine levels associated with prothrombotic fibrin clot properties.


Thrombosis , Venous Thromboembolism , Humans , Fibrin/genetics , Homocysteine/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Poland , Sulfhydryl Compounds
6.
Arterioscler Thromb Vasc Biol ; 43(10): 1808-1817, 2023 10.
Article En | MEDLINE | ID: mdl-37345522

BACKGROUND: Heparin-induced thrombocytopenia (HIT) is a major concern for all individuals that undergo cardiac bypass surgeries or require prolonged heparin exposure. HIT is a life- and limb-threatening adverse drug reaction with an immune response following the formation of ultra-large immune complexes that drive platelet activation through the receptor FcγRIIA. Thrombotic events remain high following the standard of care treatment with anticoagulants, while increasing risk of bleeding complications. This study sought to investigate a novel approach to treatment of HIT. Recent reports demonstrate increased procoagulant activity in HIT; however, these reports required analysis ex vivo, and relevance in vivo remains unclear. METHODS: Using human and mouse model systems, we investigated the cooperativity of PARs (protease-activated receptors) and FcγRIIA in HIT. We challenged humanized FcγRIIA transgenic mice with or without endogenous mouse Par4 (denoted as IIA-Par4+/+ or IIA-Par4-/-, respectively) with a well-established model IgG immune complex (anti [α]-CD9). Furthermore, we assessed the procoagulant phenotype and efficacy to treat HIT utilizing inhibitor of 12-LOX (12[S]-lipoxygenase), VLX-1005, previously reported to decrease platelet activation downstream of FcγRIIA and PAR4, using the triple allele HIT mouse model. RESULTS: IIA-Par4+/+ mice given αCD9 were severely thrombocytopenic, with extensive platelet-fibrin deposition in the lung. In contrast, IIA-Par4-/- mice had negligible thrombocytopenia or pulmonary platelet-fibrin thrombi. We observed that pharmacological inhibition of 12-LOX resulted in a significant reduction in both platelet procoagulant phenotype ex vivo, and thrombocytopenia and thrombosis in our humanized mouse model of HIT in vivo. CONCLUSIONS: These data demonstrate for the first time the need for dual platelet receptor (PAR and FcγRIIA) stimulation for fibrin formation in HIT in vivo. These results extend our understanding of HIT pathophysiology and provide a scientific rationale for targeting the procoagulant phenotype as a possible therapeutic strategy in HIT.


Thrombocytopenia , Humans , Mice , Animals , Thrombocytopenia/chemically induced , Heparin/adverse effects , Blood Platelets , Anticoagulants/adverse effects , Mice, Transgenic , Phenotype , Fibrin/genetics , Platelet Factor 4/genetics
7.
Chinese Journal of Pathology ; (12): 592-598, 2023.
Article Zh | WPRIM | ID: wpr-985738

Objective: To investigate the clinical, pathological and immunophenotypic features, molecular biology and prognosis of fibrin-associated large B-cell lymphoma (LBCL-FA) in various sites. Methods: Six cases of LBCL-FA diagnosed from April 2016 to November 2021 at the Beijing Friendship Hospital, Capital Medical University, Beijing, China and the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China were collected. The cases were divided into atrial myxoma and cyst-related groups. Clinical characteristics, pathological morphology, immunophenotype, Epstein Barr virus infection status, B-cell gene rearrangement and fluorescence in situ hybridization of MYC, bcl-2, bcl-6 were summarized. Results: The patients' mean age was 60 years. All of them were male. Three cases occurred in atrial myxoma background, while the others were in cyst-related background, including adrenal gland, abdominal cavity and subdura. All cases showed tumor cells located in pink fibrin clot. However, three cyst-related cases showed the cyst wall with obviously fibrosis and inflammatory cells. All cases tested were non germinal center B cell origin, positive for PD-L1, EBER and EBNA2, and were negative for MYC, bcl-2 and bcl-6 rearrangements, except one case with MYC, bcl-2 and bcl-6 amplification. All of the 5 cases showed monoclonal rearrangement of the Ig gene using PCR based analysis. The patients had detailed follow-ups of 9-120 months, were treated surgically without radiotherapy or chemotherapy, and had long-term disease-free survivals. Conclusions: LBCL-FA is a group of rare diseases occurring in various sites, with predilection in the context of atrial myxoma and cyst-related lesions. Cyst-related lesions with obvious chronic inflammatory background show more scarcity of lymphoid cells and obvious degeneration, which are easy to be missed or misdiagnosed. LBCL-FA overall has a good prognosis with the potential for cure by surgery alone and postoperative chemotherapy may not be necessary.


Humans , Male , Middle Aged , Atrial Fibrillation , Epstein-Barr Virus Infections , Fibrin/genetics , Herpesvirus 4, Human/genetics , In Situ Hybridization, Fluorescence , Lymphoma, Large B-Cell, Diffuse/pathology , Myxoma , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-6/genetics
8.
Anim Genet ; 53(3): 307-316, 2022 Jun.
Article En | MEDLINE | ID: mdl-35285059

Obesity is associated with increased serum fibrinogen level. Myostatin (MSTN), a strong inhibitor of skeletal muscle growth, is recognized as a potential target for obesity. However, the effect of MSTN inhibition on fibrinogen is not largely known. The objective of the present study was to explore fibrinogen levels after MSTN inhibition. Fibrinogen levels and the fibrin clot structure of MSTN homozygous knockout (KO) and wild-type (WT) pigs (n = 4 in each group) were investigated. The protein expression of fibrinogen in the serum and liver of KO pigs decreased greatly (1.6-fold loss for serum and 2.5-fold loss for liver). KO pigs showed significantly decreased gene expression of fibrinogen chains: FGA (fibrinogen-α; 11-fold), FGB (fibrinogen-ß; 8-fold) and FGG (fibrinogen-γ; 7.4-fold). The basal transcriptional regulators of fibrinogen, HNF1 (hepatocyte nuclear factor 1) and CEBP-α (CCAAT/Enhancing-binding protein-alpha) were remarkably down-regulated after interruption of MSTN expression by siRNA (small interfering RNA) in cultured hepatocytes (about 2- and 4-fold, respectively). Compared with WT pigs, KO pigs displayed altered fibrin clot structure with thinner fibers, decreased turbidity and increased permeability. The findings indicate that the inhibition of MSTN could affect fibrinogen levels and the fibrin clot structure.


Myostatin , Swine Diseases , Animals , Fibrin/genetics , Fibrin/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Homozygote , Muscle, Skeletal/metabolism , Myostatin/genetics , Obesity , Swine/genetics
9.
Sci Rep ; 12(1): 3752, 2022 03 08.
Article En | MEDLINE | ID: mdl-35260693

Cystinosis is a rare disease, caused by a mutation in the gene cystinosin and characterised by the accumulation of cystine crystals. Advantages of biomaterial-mediated gene delivery include reduced safety concerns and the possibility to cure organs that are difficult to treat using systemic gene transfer methods. This study developed novel fibrin hydrogels for controlled, localised gene delivery, for the treatment of cystinosis. In the first part, fabrication parameters (i.e., DNA, thrombin, and aprotinin concentrations) were optimised, using a Design of Experiment (DOE) methodology. DOE is a statistical engineering approach to process optimisation, which increases experimental efficiency, reduces the number of experiments, takes into consideration interactions between different parameters, and allows the creation of predictive models. This study demonstrated the utility of DOE to the development of gene delivery constructs. In the second part of the study, primary fibroblasts from a patient with cystinosis were seeded on the biomaterials. Seeded cells expressed the recombinant CTNS and showed a decrease in cystine content. Furthermore, conditioned media contained functional copies of the recombinant CTNS. These were taken up by monolayer cultures of non-transfected cells. This study described a methodology to develop gene delivery constructs by using a DOE approach and ultimately provided new insights into the treatment of cystinosis.


Amino Acid Transport Systems, Neutral , Cystinosis , Amino Acid Transport Systems, Neutral/genetics , Cystine/metabolism , Cystinosis/genetics , Cystinosis/therapy , Fibrin/genetics , Gene Transfer Techniques , Genetic Therapy , Humans
10.
Blood ; 139(9): 1302-1311, 2022 03 03.
Article En | MEDLINE | ID: mdl-34958662

Fibrinogen plays a pathologic role in multiple diseases. It contributes to thrombosis and modifies inflammatory and immune responses, supported by studies in mice expressing fibrinogen variants with altered function or with a germline fibrinogen deficiency. However, therapeutic strategies to safely and effectively tailor plasma fibrinogen concentration are lacking. Here, we developed a strategy to tune fibrinogen expression by administering lipid nanoparticle (LNP)-encapsulated small interfering RNA (siRNA) targeting the fibrinogen α chain (siFga). Three distinct LNP-siFga reagents reduced both hepatic Fga messenger RNA and fibrinogen levels in platelets and plasma, with plasma levels decreased to 42%, 16%, and 4% of normal within 1 week of administration. Using the most potent siFga, circulating fibrinogen was controllably decreased to 32%, 14%, and 5% of baseline with 0.5, 1.0, and 2.0 mg/kg doses, respectively. Whole blood from mice treated with siFga formed clots with significantly decreased clot strength ex vivo, but siFga treatment did not compromise hemostasis following saphenous vein puncture or tail transection. In an endotoxemia model, siFga suppressed the acute phase response and decreased plasma fibrinogen, D-dimer, and proinflammatory cytokine levels. In a sterile peritonitis model, siFga restored normal macrophage migration in plasminogen-deficient mice. Finally, treatment of mice with siFga decreased the metastatic potential of tumor cells in a manner comparable to that observed in fibrinogen-deficient mice. The results indicate that siFga causes robust and controllable depletion of fibrinogen and provides the proof-of-concept that this strategy can modulate the pleiotropic effects of fibrinogen in relevant disease models.


Afibrinogenemia/metabolism , Fibrin/biosynthesis , Fibrinogen/biosynthesis , Gene Knockdown Techniques , Liposomes/pharmacology , RNA, Small Interfering , Afibrinogenemia/genetics , Animals , Blood Platelets/metabolism , Disease Models, Animal , Female , Fibrin/genetics , Fibrinogen/genetics , Humans , Male , Mice , Nanoparticles , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology
11.
PLoS One ; 16(11): e0260366, 2021.
Article En | MEDLINE | ID: mdl-34813608

A highly reduced extrinsic pathway coagulation model (8 ODEs) under flow considered a thin 15-micron platelet layer where transport limitations were largely negligible (except for fibrinogen) and where cofactors (FVIIa, FV, FVIII) were not rate-limiting. By including thrombin feedback activation of FXI and the antithrombin-I activities of fibrin, the model accurately simulated measured fibrin formation and thrombin fluxes. Using this reduced model, we conducted 10,000 Monte Carlo (MC) simulations for ±50% variation of 5 plasma zymogens and 2 fibrin binding sites for thrombin. A sensitivity analysis of zymogen concentrations indicated that FIX activity most influenced thrombin generation, a result expected from hemophilia A and B. Averaging all MC simulations confirmed both the mean and standard deviation of measured fibrin generation on 1 tissue factor (TF) molecule per µm2. Across all simulations, free thrombin in the layer ranged from 20 to 300 nM (mean: 50 nM). The top 2% of simulations that produced maximal fibrin were dominated by conditions with low antithrombin-I activity (decreased weak and strong sites) and high FIX concentration. In contrast, the bottom 2% of simulations that produced minimal fibrin were dominated by low FIX and FX. The percent reduction of fibrin by an ideal FXIa inhibitor (FXI = 0) ranged from 71% fibrin reduction in the top 2% of MC simulations to only 34% fibrin reduction in the bottom 2% of MC simulations. Thus, the antithrombotic potency of FXIa inhibitors may vary depending on normal ranges of zymogen concentrations. This reduced model allowed efficient multivariable sensitivity analysis.


Factor IX/metabolism , Factor XI/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Thrombosis/metabolism , Alternative Splicing , Blood Circulation , Blood Coagulation , Fibrin/genetics , Fibrinogen/genetics , Humans , Models, Biological , Thrombosis/blood , Thrombosis/genetics , Thrombosis/physiopathology
12.
Biomolecules ; 11(10)2021 10 19.
Article En | MEDLINE | ID: mdl-34680180

This study aimed to analyze the effects of fibrin constructs enhanced with laminin-nidogen, implanted in the wounded rat soft palate. Fibrin constructs with and without laminin-nidogen were implanted in 1 mm excisional wounds in the soft palate of 9-week-old rats and compared with the wounded soft palate without implantation. Collagen deposition and myofiber formation were analyzed at days 3, 7, 28 and 56 after wounding by histochemistry. In addition, immune staining was performed for a-smooth muscle actin (a-SMA), myosin heavy chain (MyHC) and paired homeobox protein 7 (Pax7). At day 56, collagen areas were smaller in both implant groups (31.25 ± 7.73% fibrin only and 21.11 ± 6.06% fibrin with laminin-nidogen)) compared to the empty wounds (38.25 ± 8.89%, p < 0.05). Moreover, the collagen area in the fibrin with laminin-nidogen group was smaller than in the fibrin only group (p ˂ 0.05). The areas of myofiber formation in the fibrin only group (31.77 ± 10.81%) and fibrin with laminin-nidogen group (43.13 ± 10.39%) were larger than in the empty wounds (28.10 ± 11.68%, p ˂ 0.05). Fibrin-based constructs with laminin-nidogen reduce fibrosis and improve muscle regeneration in the wounded soft palate. This is a promising strategy to enhance cleft soft palate repair and other severe muscle injuries.


Fibrin/genetics , Fibrosis/genetics , Palate, Soft/injuries , Wound Healing/genetics , Actins/genetics , Animals , Collagen/genetics , Fibrin/pharmacology , Fibrosis/pathology , Fibrosis/therapy , Humans , Laminin/genetics , Laminin/pharmacology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/growth & development , Myofibrils/genetics , Myosin Heavy Chains/genetics , Paired Box Transcription Factors/genetics , Palate, Soft/drug effects , Palate, Soft/pathology , Rats , Regeneration/genetics
13.
Int J Mol Sci ; 22(13)2021 Jun 28.
Article En | MEDLINE | ID: mdl-34203139

Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis and bleeding risk, while maintaining the fine balance between clot formation and lysis.


Factor XIIIa/metabolism , Fibrin/metabolism , Fibrinogen/metabolism , Thrombosis/metabolism , Animals , Factor XIIIa/genetics , Fibrin/genetics , Fibrinogen/genetics , Fibrinolysis/genetics , Fibrinolysis/physiology , Humans , Thrombosis/genetics
14.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article En | MEDLINE | ID: mdl-33919968

The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-ß1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-ß1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.


Collagen/pharmacology , Mouth Mucosa/drug effects , Periodontal Ligament/drug effects , Regeneration/genetics , Wound Healing/genetics , Animals , Becaplermin/genetics , Cell Adhesion/drug effects , Cell Movement/drug effects , Collagen/chemistry , Endothelial Cells/drug effects , Fibrin/genetics , Fibrinolysis/drug effects , Fibroblast Growth Factor 2/genetics , Fibroblasts/drug effects , Gene Expression Regulation, Developmental/drug effects , Growth Differentiation Factor 5/genetics , Hemostasis/drug effects , Heterografts , Humans , Mice , Mouth Mucosa/growth & development , Periodontal Ligament/growth & development , Primary Cell Culture , Transforming Growth Factor beta1/genetics
15.
Int J Mol Sci ; 22(8)2021 Apr 14.
Article En | MEDLINE | ID: mdl-33920051

Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.


Atherosclerosis/diagnostic imaging , Blood Platelets/ultrastructure , Microscopy, Video , Receptors, Purinergic P2X7/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Blood Circulation/physiology , Blood Coagulation/genetics , Blood Platelets/metabolism , Carotid Arteries/diagnostic imaging , Carotid Arteries/ultrastructure , Fibrin/genetics , Humans , Microscopy, Confocal , Platelet Aggregation/genetics , Thrombosis/diagnostic imaging , Thrombosis/pathology
16.
Elife ; 102021 03 08.
Article En | MEDLINE | ID: mdl-33683204

Extensive fibrin deposition in the lungs and altered levels of circulating blood coagulation proteins in COVID-19 patients imply local derangement of pathways that limit fibrin formation and/or promote its clearance. We examined transcriptional profiles of bronchoalveolar lavage fluid (BALF) samples to identify molecular mechanisms underlying these coagulopathies. mRNA levels for regulators of the kallikrein-kinin (C1-inhibitor), coagulation (thrombomodulin, endothelial protein C receptor), and fibrinolytic (urokinase and urokinase receptor) pathways were significantly reduced in COVID-19 patients. While transcripts for several coagulation proteins were increased, those encoding tissue factor, the protein that initiates coagulation and whose expression is frequently increased in inflammatory disorders, were not increased in BALF from COVID-19 patients. Our analysis implicates enhanced propagation of coagulation and decreased fibrinolysis as drivers of the coagulopathy in the lungs of COVID-19 patients.


Blood Coagulation/genetics , COVID-19/pathology , Fibrin/genetics , Lung/pathology , SARS-CoV-2 , Anticoagulants/metabolism , Bronchoalveolar Lavage Fluid , COVID-19/genetics , COVID-19/metabolism , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/metabolism , Fibrin/metabolism , Gene Expression , Humans , Kallikrein-Kinin System/genetics , Kallikreins/genetics , Kallikreins/metabolism , Kinins/genetics , Kinins/metabolism , Lung/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA , Thrombomodulin/genetics , Thrombomodulin/metabolism , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
17.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article En | MEDLINE | ID: mdl-32764459

Coagulopathy and older age are common and well-recognized risk factors for poorer outcomes in traumatic brain injury (TBI) patients; however, the relationships between coagulopathy and age remain unclear. We hypothesized that coagulation/fibrinolytic abnormalities are more pronounced in older patients and may be a factor in poorer outcomes. We retrospectively evaluated severe TBI cases in which fibrinogen and D-dimer were measured on arrival and 3-6 h after injury. Propensity score-matched analyses were performed to adjust baseline characteristics between older patients (the "elderly group," aged ≥75 y) and younger patients (the "non-elderly group," aged 16-74 y). A total of 1294 cases (elderly group: 395, non-elderly group: 899) were assessed, and propensity score matching created a matched cohort of 324 pairs. Fibrinogen on admission, the degree of reduction in fibrinogen between admission and 3-6 h post-injury, and D-dimer levels between admission and 3-6 h post-injury were significantly more abnormal in the elderly group than in the non-elderly group. On multivariate logistic regression analysis, independent risk factors for poor prognosis included low fibrinogen and high D-dimer levels on admission. Posttraumatic coagulation and fibrinolytic abnormalities are more severe in older patients, and fibrinogen and D-dimer abnormalities are negative predictive factors.


Blood Coagulation/genetics , Brain Injuries, Traumatic/blood , Fibrinogen/metabolism , Fibrinolysis/genetics , Adolescent , Adult , Age Factors , Aged , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Cohort Studies , Female , Fibrin/genetics , Fibrin/metabolism , Fibrinogen/genetics , Humans , Injury Severity Score , Male , Middle Aged , Young Adult
18.
Int J Mol Sci ; 21(13)2020 Jun 29.
Article En | MEDLINE | ID: mdl-32610551

Fibrinogen is a hexameric plasmatic glycoprotein composed of pairs of three chains (Aα, Bß, and γ), which play an essential role in hemostasis. Conversion of fibrinogen to insoluble polymer fibrin gives structural stability, strength, and adhesive surfaces for growing blood clots. Equally important, the exposure of its non-substrate thrombin-binding sites after fibrin clot formation promotes antithrombotic properties. Fibrinogen and fibrin have a major role in multiple biological processes in addition to hemostasis and thrombosis, i.e., fibrinolysis (during which the fibrin clot is broken down), matrix physiology (by interacting with factor XIII, plasminogen, vitronectin, and fibronectin), wound healing, inflammation, infection, cell interaction, angiogenesis, tumour growth, and metastasis. Congenital fibrinogen deficiencies are rare bleeding disorders, characterized by extensive genetic heterogeneity in all the three genes: FGA, FGB, and FGG (enconding the Aα, Bß, and γ chain, respectively). Depending on the type and site of mutations, congenital defects of fibrinogen can result in variable clinical manifestations, which range from asymptomatic conditions to the life-threatening bleeds or even thromboembolic events. In this manuscript, we will briefly review the main pathogenic mechanisms and risk factors leading to thrombosis, and we will specifically focus on molecular mechanisms associated with mutations in the C-terminal end of the beta and gamma chains, which are often responsible for cases of congenital afibrinogenemia and hypofibrinogenemia associated with thrombotic manifestations.


Afibrinogenemia/genetics , Fibrinogen/genetics , Fibrinogen/metabolism , Afibrinogenemia/physiopathology , Blood Coagulation Tests , Factor XIII/genetics , Fibrin/genetics , Fibrinolysis/genetics , Hemorrhage , Hemostasis , Hemostatics , Humans , Phenotype , Thrombosis/genetics , Thrombosis/physiopathology
19.
Int J Hematol ; 112(3): 331-340, 2020 Sep.
Article En | MEDLINE | ID: mdl-32562089

We identified two heterozygous dysfibrinogenemias, Bßp.Gly45Cys (Kyoto VII; K-VII) and Bßp.Arg74Cys (Iida II; I-II). The impairment of polymerization of Bßp.G45C has been well analyzed; however, that of Bßp.R74C has not. Thus, we compared fibrin polymerization between these variants. To determine the structural and functional characterization of purified fibrinogens, we performed immunoblotting analysis, kinetic analyses of fibrinopeptide A and B release, and thrombin- or batroxobin-catalyzed fibrin or fibrin monomer polymerization. Immunoblotting analysis showed that both variant fibrinogens had variant fibrinogen-albumin complexes and variant fibrinogen multimers, and the amounts of fibrinogen-albumin complexes with fibrinogen K-VII was more than with fibrinogen I-II. Moreover, fibrinopeptide B release from fibrinogen K-VII was about 50% of the control, whereas the others were normal. The maximum slopes of polymerization for variant fibrinogens were reduced, but fibrinogen K-VII was reduced more than fibrinogen I-II. The present study demonstrated that both Bßp.G45C and Bßp.R74C variants showed the presence of variant fibrinogen-albumin complexes and variant fibrinogen multimers, and polymerization of Bßp.G45C was impaired more than Bßp.R74C. Our study and several previous reports concerning the clinical phenotype of both variants suggested the risks of bleeding for patients with Bßp.G45C and thrombosis for patients with Bßp.R74C.


Afibrinogenemia/genetics , Afibrinogenemia/metabolism , Fibrin/genetics , Fibrin/metabolism , Fibrinogen/genetics , Fibrinogen/metabolism , Adult , Child , Female , Fibrinogen/chemistry , Genetic Variation , Hemorrhage/etiology , Hemorrhage/genetics , Heterozygote , Humans , Male , Molecular Structure , Polymerization , Risk , Thrombosis/etiology , Thrombosis/genetics
20.
PLoS One ; 15(5): e0233640, 2020.
Article En | MEDLINE | ID: mdl-32453766

Understanding the coagulation process is critical to developing treatments for trauma and coagulopathies. Clinical studies on tranexamic acid (TXA) have resulted in mixed reports on its efficacy in improving outcomes in trauma patients. The largest study, CRASH-2, reported that TXA improved outcomes in patients who received treatment prior to 3 hours after the injury, but worsened outcomes in patients who received treatment after 3 hours. No consensus has been reached about the mechanism behind the duality of these results. In this paper we use a computational model for coagulation and fibrinolysis to propose that deficiencies or depletions of key anti-fibrinolytic proteins, specifically antiplasmin, a1-antitrypsin and a2-macroglobulin, can lead to worsened outcomes through urokinase-mediated hyperfibrinolysis.


Blood Coagulation Disorders/drug therapy , Tranexamic Acid/therapeutic use , Urokinase-Type Plasminogen Activator/genetics , Wounds and Injuries/drug therapy , Antifibrinolytic Agents/therapeutic use , Blood Coagulation/genetics , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/genetics , Blood Coagulation Disorders/pathology , Computer Simulation , Fibrin/genetics , Fibrin Clot Lysis Time , Fibrinolysin/genetics , Fibrinolysis/drug effects , Hemorrhage/blood , Hemorrhage/drug therapy , Hemorrhage/genetics , Humans , Membrane Proteins/genetics , Mortality , Pregnancy-Associated alpha 2-Macroglobulins/genetics , Thrombin/genetics , Thrombin/metabolism , Wounds and Injuries/blood , Wounds and Injuries/genetics , Wounds and Injuries/pathology , alpha 1-Antitrypsin/genetics
...